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The joint probability of a set of structure factors involved in a Karle-Hauptman determinant is evaluated. 
For equal at0m,t under condition, to be ~pecifiedl the theory leads t0 the conclusion; among all comoina. 
tlons of phases compatible with the condition of non-negativity of a Karle-Hauptman determinant, 
the most probable combination is that which maximizes this determinant. This 'maximum determinant 
rule' can be used as a basis for the practical determination of phases. Special cases and further properties 
of the determinants are also obtained from the main expression for the joint probability. 

The aim of this paper is the development of a method 
allowing the simultaneous determination of a large 
number of structure invariants. This method is based 
upon a new probability relation between structure fac- 
tors obtained by use of the theory of 'conditional joint 
probabilities'. 

The final formula [equation (8)] can be expressed 
very simply in terms of Karle-Hauptman determinants. 
Thus, this formula establishes a connection between 
inequality theory (Harker & Kasper, 1948; Karle & 
Hauptman, 1950) and the probability concept [initiated 
by Hauptman & Karle (1953) and further developed by 
several authors: Bertaut, Cochran, Woolfson, Kitaigo- 
rodski, Klug]. 

The practical possibilities can be summarized by the 
following statement, valid under conditions to be 
specified below: 

Among all combinations of phases compatible with the 
condition of non-negativity of the Karle-Hauptman 
determinant, the most probable combination is the one 
that leads to the maximum value of this determinant. 
Thus, the 'maximum determinant method' allows the 
simultaneous determination (in the statistical sense) of 
a large number of phases. 

The above theory, which involves the definition of a 
new determinant is given in §§ 1 and 2. 

As this determinant has a fundamental role, its 
properties are studied in § 3. A geometrical interpreta- 
tion in Hilbert space allows a simple formulation of 
these properties. 

In § 4 we deal with some special cases and we show 
that several statistical theories developed by Wilson, 
Cochran & Woolfson, and Karle & Hauptman (the 
'unified algebraic approach') can be very simply de- 
duced from the general formula (8). 

1. Conditional joint probabilities 

(A) Definition of the a priori conditions 
The essential difference between the work of pre- 

vious authors on structure factor probabilities and the 
present study lies in the notion of 'conditional joint 
probability'. 

The problem can be stated as follows: let us consider 
m normalized structure factors denoted by 
E l . . .  E!o. . .  Em which are considered as random 
variables; we are seeking the probability law (or 
'probability density' or 'distribution law'), 

p (E1 . . .  Era), 

under the condition that other structure factors (to be 
defined below) have values fixed and known a priori. 

We now give explicitly the relationship between the 
reciprocal lattice vectors corresponding to the m 
structure factors E l . . .  Era (random variables) and 
those corresponding to the fixed structure factors. 

For simplicity, we assume that all atoms are identical. 
The normalized structure factor E n is then given by: 

1 N 
EH= ,/~r ~ exp (2~ziH. rj) ; 

V l ,  1 ,1  
(1) 

H: reciprocal lattice vector, 
r~: vector defining the position of the j th  atom, 
N: number of atoms in the unit cell. 

The unitary structure factors are given by: 

UI~= EH/ ~/ N . (2) 

For reasons that will become apparent later, let us 
set: 

Ep=EL+Hp, p = l ,  . . .  m;  

H~ are fixed vectors, 
L is a random vector (i.e. it sweeps out all reciprocal 

space). 
Therefore, (L+H:o) are also random vectors. The 

families of m random variables E1 . .. Era are generated 
by considering vector L as sweeping out all reciprocal 
space: as a consequence, the 'figure' formed by the m 
points L + t t ~  moves randomly' in reciprocal space, 
in the sense that this 'figure' sweeps out all reciprocal 
space (keeping a constant orientation). 

We also notice that to each pair of E's, say Ep= 
EL--Hp and Eq = EL+nq , corresponds one fixed reciprocal 
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vector H p - H  a such that:  

(L+ H p ) - ( L +  Hq)=H~, -Hq  . 

We now give the fundamental condition which 
governs the probability we are seeking: 

We assume that the m ( m -  1)/2 unitary structure fac- 
tors corresponding to the fixed reciprocal vectors 
( H ~ - H q )  have values which are fixed and known a 
priori. 

UHp_rI = Upq=constant p ,q=  1, . . .  m . (3) 

It is perhaps important  to emphasize that this a 
priori lack of knowledge is not an obstacle for practical 
determination of crystal structures, as a process of 
recurrent determination of phases will be described 
later. 

(B) Interpretation of  the conditions 
The connection between the above conditions [equa- 

tion (3)] and familiar notions in crystal analysis will 
appear in the following remarks '  

(a) The m ( m - 1 ) / 2  correlation coefficients between 
the m random variables El . . .  Em are given by the 
Sayre equation: 

Ok') 
EK E n _ K  = UH; (4) 

H: fixed vector, 
K: random vector. 

The notation of the left-hand member means 
'average over K'. 

The above statement is obvious if we make the 
following change of notation" 

K = L + H ~ ,  

H = H ~ - H q .  

Then, equation (4) becomes: 

EpEa* = EL+Hp E-L--a ,  (I")= UHp-H, (P,q= 1, . . .  m) . 

(4a) 

The left-hand side of (4a) is, by definition, the 
correlation coefficient between the random variables 
E~ and E e 

If  p=q ,  we obtain from (4a) the obvious relation" 

IE-pi z= IEL+Hpl 2 ~ ) =  U0 = 1. (5) 

(b)The correlation coefficients U~q form, in the usual 
probability terminology, the 'covariance matrix',  the 
determinant of which is a Kar le -Hauptman deter- 
minant. 

We recall that 

Dm = det( U~q) >_ O . (6) 

The above two statements can be summarized as 
follows: 

For  p, q =  1 . . .  m, there are m 2 Sayre's relations 
given by (4a); the right-hand sides of these equations 
form a non-negative Kar le-Hauptman determinant Dm 
of order m. 

(C) Definition of  the Am+l determinant 
Let us consider a new determinant obtained from 

Dm by adding a last column and line, formed by the m 
structure factors E a . . .  Em (the last element is set 
equal to N, number of atoms in the unit cell). This 
determinant of order m +  1, divided by N, is also a 
Kar le-Hauptman determinant, but it will be denoted 
differently, by Am+x, in order to emphasize the random 
character of its value, as it depends upon the reciprocal 
random vector L (in contrast with Dm whose elements 
are assumed to be fixed). 

Summarizing, the Am+x determinant contains all 
structure factors involved simultaneously in the above 
theory: 

The m structure factors EL+ H of the last column 
(and line) of  Am+l are considered" Pas random variables." 

The right-hand sides of the m z Sayre's equa- 
tions: 

Table 1. Values of  Am+l/Dm and corresponding probability for a particular vector L of  jamine (m = 16) 

p l e a d  Correct 
1 2.03 
2 2.89 + 
3 2-35 + 
4 1.86 + 
5 0.37 + 
6 2.22 + 
7 0.87 + 
8 1.88 + 
9 0.99 + 

10 3.36 + 
11 1.20 + 
12 0.49 + 
13 0.72 + 
14 0.63 - 
15 2.60 + 
16 1.23 - 
Am+l/Din 0"368 
p(Am+l) 0"9960 

Possible combinations of signs of E1EpU~x 
Incorrect 

All signs positive 

+ + -- + + + 
+ -- + + -- + 
+ + + -- _ + 
+ + + + + + 
_ _ _ + + + 

0-252 0"211 0"139 0"117 0"064 0"07 
0"0036 0"0004 ,-, 0 ,-, 0 ,-, 0 ,-, 0 
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1 
Am+l = -~  

Dm (fixed values of U~q) 
^ 

1 U12 Ulv Usq 

U21 1 Wzv U2~ 

Ulm 

U2m 

Uvl Uv2 

Uql U~ 

1 Uvq 

Uqv 1 

U•m 
U~m 

Uml Urn2 • Umv Umq 1 

E--HI--L E--Hz--L E--Hp--L E--Ha--L • • E_Hm_ L 

Random 
variables 

EL+HI  

EL+H2 

EL+Hp 

-EL-I-H,~ 

E L + H  m 

N 

, (L) 
EL+Hp/~L+Hq =UHp_H =Up~=constant; 
L: random vector, 
I-I v, Hq: fixed vectors, p, q = 1, . . .  m, 
Din: det(U~oq) >_0. 

(7) 

form the non-negative Karle-Hauptman determinant 
Dm, which is a principal minor of Am+1. 

(D) Result 

To obtain the probability p(E1 . . .  Em), we could use 
the classical method of the 'characteristic function'. 
However, the result is directly obtainable by the appli- 
cation of the central limit theorem. The conditions for 
the validity of this theorem are: 

1. The number of atoms N in the unit cell is very 
large. 

2. The positions of the atoms in the asymmetric unit 
cell are mutually independent• 

The probability law corresponding to the above 
conditions is an m-dimensional Laplace-Gauss law, 
involving the definite positive hermitian form (or 
quadratic form in the centrosymmetrical case), Q: 

centrosymmetrical 
p(E1 . . .  em)=(2~)-m~2D;, ~ exp (-½Q,3 (8a) 

non-centrosymmetrical 
p(Ex . . .  Em)=(2rc)-mDTn u2 exp ( - Q ~  (8b) 

where Qm is given by either of the following equivalent 
expressions" 

Qm=E+[U-1]E, (9) 

~ m  
Q m = ~ DveEpE a (9a) 

p=l  q=l 

Qm = N Dm - Am+l 
Dm ' (9b) 

E: m dimensional column vector of which the 
components are (El . . .  Em), 

E+: transpose of E, 
[U]: matrix of elements Uvq, 
[U-q: inverse matrix of matrix [U], 
Dvq: element of [U-q, 
N: number of atoms in the unit cell, 
Dm and Am+l: Karle-Hauptman determinants. 

In the non-centrosymmetrical case, the notation 
p ( E 1 . . .  Em) (where E's are complex variables) re- 
presents, in fact, the joint probability 

p(AI,B1, . . .  Am, Bm), 

where A and B are respectively the real and imaginary 
part of E: 

Es = A1 + iBx, etc. 

It is important to emphasize that the hermitian form 
Qm, and consequently, the probability law depends 
only upon the value o f  two Karle-Hauptman deter- 
minants Dm and Am+l. The proof of (9b) is given in 
Appendix A. 

Special case o f  (8) 
Let us suppose now that all E's except one, Ev, are 

known. Then, by elementary manipulations (see 
Fortet, 1965)we can obtain from (8) the (unidimen- 
sional) distribution law of Ev; it is a Gaussian law: 

1 exp [ (EP-EP)2] p(Ep) - (10) 
1/~  o,,, L 2o-~ J 
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with a mean value: 

q # p  
2 and a variance ap 

a~=l/Du,. (12) 

2. Application to the phase problem: The maximum 
determinant method 

Let us assume that the moduli of all structure factors 
appearing in Arn+l are fixed. Then, the value of Arn+x 
depends only on the phases of the structure invariants 

Tp=ExE~U,x 
=EL+HIE_L_HpUI.Ip_H, (p=2 ,  . . .  m) ,  

not on the phases of the individual structure factors E~0 
(Kitaigorodski, 1961). 

Let us also notice that the maximum value of the 
conditional joint probability (8) is obtained when 
Am+x is a maximum; indeed, keeping in mind that all 
U~q's are constant, we can write: 

p(Ex . . .  Em)=constant x exp (N ~ m t  ) • 

We are now able to state the following rule: the most 
probable values of the phases of the structure invariants 
T~ corresponding to E~ are those which lead to the 
maximum value of the Am+x determinant. 

We write schematically: 

[Am+x]  most  p robab le  set of phases=maximum. (13) 

This 'maximum determinant rule' is the basis of a 
practical method for the determination of crystal 
structures, to be described in a forthcoming paper. It 
has been successfully applied to solving the structure of 
trigonellin hydrate (De Rango, 1969). 

It is important to emphasize that for centrosymme- 
trical structures, the signs of the structure invariants 
determined by this rule may be positive or negative; 
the statistical methods developed previously allow one 
only to infer, with a certain probability, that the sign 
of the invariants is positive. 

Also, for non-centrosymmetrical structures, pre- 
vious formulae (e.g. Cochran, 1955) lead to a probable 
value for the phase of T~ which is always equal to 0, 
whereas the above rule may yield a value which is not 
necessarily 0 (as a result of the assumed knowledge of 
the phases of U~q). 

Numerical test of the 'maximum determinant rule' 
It is important to show, for an actual structure, that 

there are effectively cases where the maximum value of 
Am+l is obtained for a negative value of the invariants 
EHEK E-H-K. 

The following data corresponding to the structure of 
jamine (Karle & Karle, 1964) are extracted from the 
thesis of De Rango (1969). For a determinant of order 

17, there are only a few combinations compatible with 
the inequality Am+,>O. The correct combination 
yields the maximum value of Am+x (Table 1). 

The probability pj for occurrence of thej th  combina- 
tion is given by the formula: 

PS=[p(Ex . . .  Em)]S/~ [p(Ex . . .  Em)]i (14) 
1 

where [p(Ex . . .  Em)], denotes the value of the prob- 
ability density (8) corresponding to the ith combina- 
tion of phases compatible with the inequality Am+l > O. 

It is remarkable that the probability for the correct 
combination is almost equal to 1, although the 'con- 
trast' between the different values of Am+l is quite 
small. 

In conclusion, if the inequality theory indicates that 
only combinations of phases yielding a non-negative 
Karle-Hauptman determinant are possible, the condi- 
tional joint probability theory states, that among all 
possible combinations, the most probable is that which 
leads to the maximum value of this determinant. 

3. Properties of the A determinants 

(A) Inequalities 

The main result [equation (8)] can be usefully inter- 
preted in terms of Hilbert or Euclidean geometry 
(Appendix B). We recall that Dm, as well as Am+b are 
special cases of the Gram determinant (Gantmacher, 
1966; Goedkoop, 1953). The theory of Gram deter- 
minants yields also the following result, which, to the 
knowledge of this author, does not seem to have been 
pointed out in the crystallographic literature. 

A Karle-Hauptman determinant Dm+l of order 
m + 1 is limited on both sides: 

D m  > D m + l  > O  . ( 1 5 )  

Therefore, the sequence of Karle-Hauptman deter- 
minants Drn, as m increases, forms a non-increasing 
series. 

For equal atoms we have Am+l = Dm+b so that equa- 
tion (15) can be written as (15a): 

Dm > Am+x >0.  (15a) 

In the case of unequal atoms, Am+l is not defined by 
(7), but by (B. 6). However, with this new definition of 
Am+,, equation (15a) is still valid, although Am+l ¢ Dm+l. 

(B) Average value of the Am+a determinant 
We now pose the question: for a given Dm what is 

the average value of Am+l when L sweeps out uniformly 
all reciprocal space? In other words, what is the 'ex- 
pected value' of Am+l when L is picked out arbitrarily? 

Using Sayre's equation (4a), we obtain for the her- 
mitian form Q: 

- -o~)  Jim_. " • (L) m '~  

Qm = Z Dpo EpE,. = Z 
p,q= l p,q= l 

a p a  Upq ~ m . 

A C 26A - 3 
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The last equality follows from the fact that D~°q and 
U~o~ are, respectively, elements of the matrices [U -x] 
and [U]. 

Recalling that: 

- - (L)  ( 
Qm = N  1 

we obtain: 

/fm+1.11,)) 
Dm 

..:'-(1_ m < N .  (16) 

This equation may be a practical guide for searching 
the combination of phases which maximize Am+l. 

Remark 
For the limiting case m = N we obtain: 

Am+l = AN+I = 0 

as it should, according to the Gram theory (Goedkoop, 
1953). 

4. Special  cases  

It is interesting to apply the general theory given in § 1, 
where m has any value, to special cases (m= 1,2,3) 
which have already been studied by previous authors. 

m = 1. Wilson's statistics 
Clearly equation (8) reduces to Wilson's distribution 

because, for m = 1 : 

Qt = IEHI 2 O 1 = 1 .  
m = 2  

(a) Correction term in Woolfson's "hyperbolic tangent" 
formula 

After a convenient notation change we can write for 
equal atoms: 

A,n+l = d 3  = U H 1 Er~_ K . 
E~ E._~ m 

In the centrosymmetrical case, the conditional joint 
probability is given by: 

P(EK,EH_K I UH) = 
1 1 exp [ -  E2 +E2-K--2UHExEK-H ] 

2rr V I ~  . 2 ( 1 -  U ~  1" 
(17) 

Following the reasoning of Cochran & Woolfson 
(1955), we obtain for the probability that the structure 
invariants are positive: 

IEK EH--K EH! 
P + = ½ + ½  tanh I / N ( I _ U d  ) . (18) 

These authors used also the concept of conditional 
joint probability (for m=2) ,  but formula (18) differs 
from Woolfson's familiar formula by the factor 
(1 - Ua 2) which is neglible only if I fHI ,~ 1. 

A numerical test of equation (18) is given by Fig. 1 
for the reflexion 214 ofjamine. 

(b) Extension of Friedel's law 
Applying equation (10) for the centrosymmetrical 

case, we can write for the probability law of E K - a ,  
under the supplementary condition that E K is fixed, as 
well as UH: 

P(EH-~ I UH, EK)= 
1 exp [ (EH-" -- UHEK)2 ] .  

t-  j 
(19) 

Suppose now that I Unl -+ 1. Then, the above equations 
show that: 

EH--K "--> SHEK IEH--K [ = [EK [ (20) 

where SH is the sign of On. 
This means that, if all atoms diffract in phase for the 

reflexion H, then the end of vector H/2 is a center of 
symmetry (SH = 1) or antisymmetry (s H = --1) in recip- 
rocal space. Obviously, for the moduli of the struc- 
ture factors, H/2 is a cenret of symmetry. Naturally, 
for values of IUHI less than 1, but still considerable, 
H/2 is a 'pseudo-center' of symmetry. This is illustrated 
in Fig. 2 which represents the reciprocal space points 
hkO of kyanite (De Rango, Tsoucaris & Zelmer, 1966); 
reflections 500 and ]'40 can be considered as pseudo- 
centers of symmetry. If  H is the null vector, then equa- 
tion (20) amounts to Friedel's law: 

IE-KI=IEKI. 

1"0 P÷ 

0"9 , , ~  

0"8 o/ ' 

0"7 / /  

0"6 

0"5 X 
0 2 4 6 8 10 12 

Fig. 1. Statistical distribution of the invariants EitE K EIt -K for 
all reflexions of jamine corresponding to a fixed H (h=2, 
k = l , / = 4 )  with IUHI=0.70. 

X + (P+) Woolfson = ½ + ½ tanh ---- 
6-92 
X • (P4) equation (18)=½+½ tanh - -  

3-53 
© = experimental points 
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Remark  
This pseudosymmetry phenomenon holds also for 

non-centrosymmetrical structures. 

m = 3. The 'unified algebraic approach' 
From the general law (8) one can compute the aver- 

age value of any function of the variables (El, . .  • Era). 
For m = 3, the calculation of the average of the func- 

tion given below leads to the 'unified algebraic' formula 
of Karle & Hauptman (1957) (non-centrosymmetrical 
case): 

E l = E  L E2 = E L _  H E3 = E L _  K 

M =  (IELI2-1) (IEL_rII2--1) (IEL_xI2--1) 

./kTr~)= I I I Mp(EI'E2'E3)dE'dE2dE3 

_I~(L) = 2N-312 {Re(EHEHE_H_K) -- N-112 

x(IEaI2+IEKI2+IEH+~¢I-2)} .  (21) 

The knowledge of the complete probability law 
[equation (8)], instead of the 'average equation' (21) can 
provide a better approach to the determination of 
structure invariants from the moduli of all structure 
factors. 

A P P E N D I X  A 

We shall prove that: 
E+[U-qE = N Dm - Am+l 

Om 

Let us develop the Am+x determinant given by equa- 
tion (7) along the elements of the last column, then 
along the elements of the last line: 

Am+l = ( -  + NDm 

where ~oq denotes the minor order m -  1 obtained from 
Dm by suppressing the pth line and qth column. 

The above equation can be written as: 
m 

N(Dm-Am+,)= ~ ~ ( -  1)P+'fipoE, E ;. 
P----1 q J l  

However, the elements of [U-q are: 
D~q=[U-1]~=( -  1)~+%,dDm. 

Therefore: 
Din-- Am+ 1 m 

N - Z Z D~'~EnE; 
Dm [p~ , lq= l ]  

which is (9b). 

qF  

Lh ,I lL ~-7. 
I F  I F  ~F 

• d h  .6 ,,,,, d l k  
I F  ' I F  ~F I F  

I F  
d l h  -~ ,I lL 
I P '  I F  

I I I I ,  

AlL 2 
I F  

L 1 "  

" -  CD _ _ ' 7  -6 -5 - 3  2 _ _  _ _ _  3 4 5 6 17 

~ N K N  d ~...... / ~ 
-- ----- ~ ~ - 1 1  Iv 

d h l  ~ ' I  4 ~ ~ " - . I I  h 
I F  I F  

- 

l i b  dh ~" d h  
: q l F  I F  ~ I F  

d7 At, 
-" , ,  ~ F  

I d h  8 
• I F  ---r 

I 

lib 
q F  

Fig. 2. Weighted  reciprocal  lattice points  hkO of  kyanite.  The  po in t  h = 2.5 k = 0  is a 'pseudo- invers ion '  centre  as a consequence  
of  the large value of  I Us001. 

A C 26A - 3* 
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APPENDIX B 

G e o m e t r i c a l  interpretat ion  and further  propert ies  
of Am+l (Gram) determinants  

The results of the main paper can be usefully inter- 
preted in terms of Hilbert or Euclidian space geometry. 
This space has been introduced in crystallography by 
yon Eller (1955) and Kitaigorodski (1961, p. 151). Here 
we consider the general case of unequal atoms: 

N 
E n =  ~ gj exp (2rciH. rj) 

j=l 
N f ,  

g,=s g,= ¢ ET,' j=l J 

where J~ is the atomic scattering factor. 

(A) Recap of the definition of a Gram determinant 
Let us consider m arbitrary nodes of reciprocal space 

corresponding to the  vectors: 

F ly (p=  1,2, . . .  m).  

To each node of reciprocal space we shall assign an 
N-dimensional vector: 

17 
Vv= ~ [gj exp (2rciHv. rj)]ej (B. 1) 

i = l  

where the expression in square brackets is the j th  
(complex) coordinate of V~o; ej is one of the orthonor- 
real unit vectors in N-dimensional space. 

Vectors Vv are orthonormal; as their length is given 
by: 

(V v. Vp)= E g ~ = l .  
! 

The scalar product 

exp 
j=l 

= GHp_H~= Gv~. (B.2) 

Gvq is just the structure amplitude of tile node 
( H v - H q )  corresponding to the 'square structure' 
e2(r). 

The determinant Dm whose general element is given 
by (B.2) is, by definition, a Gram determinant. In 
crystallography, with the above definition of Din, this 
is a Karle-Hauptman determinant corresponding to 
the 'square' QZ(r) structure (for equal atom structures, 
obviously, Gw = Uvq). 

In terms of Hilbert space (or Euclidian space in 
centrosymmetrical structures) geometry, it can be 
proved (Gantmacher, 1966, p. 254) that Dm is equal to 
the square of the hypervolume of the paralleleliped, 
defined by the m vectors Vv, which is non-negative: 

Dm = [Volume (V1 . . . .  V m ) ] 2  > 0 . (B.3) 

(B) Definition of the Am+l determinant 
To the sequence of m (fixed) vectors V:o we add now 

a last vector W which depends upon the random 
reciprocal lattice vector L: 

1 
W -  1/N ~. [exp ( -2zciL.  rj)]e~. (B.4) 

1 

Obviously: 
1 

(Vu. W ) =  - - ~  ~ gj exp [2rci(Hv+ L) .  rj] 
i 

=EL+Hffl /N=Eff l /N.  (B.5) 

The Am+l determinant is also a Gram determinant" 

1 Glm E 1 
1 

Am+ l = -N G,nx 1 E,n >0 .  

E t E* N 

(B.6) 

Consequently, Am+l is equal to the hypervolume in 
Hilbert space of the parallelepiped defined by the 
m +  1 vectors (Vx, . . .  V~0, . . .  Vm, W). 

(C) Geometrical interpretation of the conditional prob- 
ability law [equation (8)] 

For clearness we refer to the case m = 2 in Euclidian 
space but the result is perfectly general (Fig. 3). 

M 

/ :  ~,, 

/ / i ' ,  

/ / i ', 
/ / i ', I ,, ! l A 

Fig. 3. Particular case (m = 3) of Euclidian space 

Vl • V2 = U12 = UH1--H2 

OA = 1/N Vl • W = E1 = EL+H 1 

OB= I/N V2 • W=E2=EL+H2 

IOCI=Q=N 1-  ~ 

The probability density p(E1,E2) depends solely on the 

length Xm of OC. 
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Let us set: 

O M =  ]/NW , 

MC: vector normal to the plane (Vx, V2). 

By Pythagoras's theorem, we have" 

2__ X~m - lOCi 2= NIWI: - l /CI  2= N - I i C I  2. 

By elementary geometry and equation (3) we have" 

IM-+CI2= (volume of (V1,VE, I/NW) ~2=N A3 (B.7) 
surface of(Vb V2) ] Dz " 

By a straightforward generalization, we have: 

Am+l (B 7a) 
[MCIZ=N D----~" 

Therefore" 

dm+l Dm-Am+l = N - N  -N- IMCIE=X2m.  
Qm=N Om Om 

We conclude: 
Qm= X 2 m (B.8) 

is the square of the modulus of the projection of W 
upon the 'sub-space' (V1 . . .  Vm). 

(D) Proof of  inequality (15a) 
Clearly 

. . . +  

IMC[2_< NIWI2 = N .  

Therefore, from (B. 7a), we obtain 

Am+l _<1. (B.9) 
Dm 

The essentials of these papers were worked out 
during a stay at the Center for Crystallographic Re- 
search in Buffalo, N.Y. 

The author wishes to express his deep gratitude to 
Professor David Harker for his suggestions which 
inspired much of these papers. Likewise, the author 
feels indebted to Professor Curien, Scientific Director 
of the Centre National de la Recherche Scientifique, 
for his active interest and constructive criticism. 
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A new set of relations between structure factors corresponding to an isomorphous pair is established: 
inequalities, convolution equations, probabilities. These relations may enhance the power of direct 
methods for the determination of phases. 

The aim of this paper is to establish relations between 
structure factors belonging to pairs of isomorphous 
crystals. The theory can be applied also to a set of dif- 

fraction data obtained for the same crystal by X-ray 
and neutron diffraction respectively. These relations 
can be considered as the extension to isomorphous 


